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Abstract. We investigate the dynamics of a lattice soliton on a monatomic chain in the presence of damping
and external forces. We consider Stokes and hydrodynamical damping. In the quasi-continuum limit the
discrete system leads to a damped and forced Boussinesq equation. By using a multiple-scale perturbation
expansion up to second order in the framework of the quasi-continuum approach we derive a general
expression for the first-order velocity correction which improves previous results. We compare the soliton
position and shape predicted by the theory with simulations carried out on the level of the monatomic
chain system as well as on the level of the quasi-continuum limit system. For this purpose we restrict
ourselves to specific examples, namely potentials with cubic and quartic anharmonicities as well as the
truncated Morse potential, without taking into account external forces. For both types of damping we
find a good agreement with the numerical simulations both for the soliton position and for the tail which
appears at the rear of the soliton. Moreover we clarify why the quasi-continuum approximation is better
in the hydrodynamical damping case than in the Stokes damping case.

PACS. 63.10.+a General theory – 05.45.Yv Solitons

1 Introduction

There is a long-standing interest in the dynamical and
thermodynamical properties of anharmonic monatomic
and diatomic chains (see e.g. [1–6]). It was shown that
these anharmonic chains can bear low-energy excitations
which are solutions of a Boussinesq type equation (in the
long-wavelength approximation). For realistic interatomic
potentials these soliton-like excitations are supersonic and
correspond to a compression of the chain where the rela-
tion between amplitude (or width) and velocity depends
on the form of the interatomic potential. They are very
robust and propagate without energy loss, and their col-
lisions are almost elastic even beyond the range of valid-
ity of the continuum approximation. Due to their robust
character the soliton excitations are important in the co-
herent energy transfer and they have been used to ex-
plain energy transport in DNA [7]. There is also a grow-
ing evidence that nonlinear excitations participate in the
heat conduction of anisotropic dielectric crystals [8–11].
The non-diffusive heat flow was attributed to modified
Korteweg-de-Vries solitons in [11]. The role of breathers
for the thermal conductivity was studied in [12].

So far the main attention was paid to soliton dynam-
ics in the absence of dissipation. However, the dissipation
influences significantly the solitons, changing their shape
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and velocity. An external driving force is therefore nec-
essary to sustain a soliton in steady state. The dynamics
of slowly varying solitary wave solutions of the damped
Korteweg-de-Vries equation was investigated by using the
methods of inverse scattering theory [15], a multiple-scale
perturbation expansion [16], and a Green’s function for-
malism [17]. The soliton motion in Toda chains in the
presence of dissipation and driving forces was studied
in [13,14].

The objective of the present paper is to study prop-
erties of solitary waves in damped anharmonic lattices.
We investigate two types of damping: Stokes friction (in
Ref. [13] it is called outer friction) and hydrodynamical
(or internal) friction [18]. We study the case of poten-
tials with power-like anharmonicities as well as the case
of a truncated Morse potential. We compare the results of
numerical simulations, which are carried out for discrete
anharmonic lattices as well as for the quasi-continuum
Boussinesq system, with the results of a multiple-scale
perturbation expansion obtained in the framework of the
quasi-continuum approximation.

2 System and equations of motion

We consider a chain of equally spaced particles of mass
M (M = 1) with interatomic spacing a (a = 1) and dis-
placement from equilibrium xn. The Lagrangian of our
system is given by

L = T − U − Uext. (1)
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Here

T =
1
2

∑
n

ẋ2
n(t) (2)

is the kinetic energy ( ẋ ≡ dx
dt ),

U =
∑
n

V (xn+1 − xn) (3)

is the potential energy. We consider a potential between
first neighbors of two types: the power-like potential

V (r) = Vharm + Vanh,

Vharm =
1
2
r2, Vanh =

1
p
rp (p = 3, 4, ...) (4)

and the truncated Morse potential

V (r) =
1
2
r2 − 1

2
r3 +

7
24
r4 (5)

which is the Taylor expansion of the Morse potential
1
2 (e−r − 1)2. The last term in equation (1) represents the
influence of external forces and is given by the expression

Uext = −
∑
n

ξn(t) (xn+1 − xn) . (6)

To take into account damping effects in soliton dy-
namics we introduce the dissipation function Ψ [18]. In
the case of the Stokes friction when the damping occurs
due to interaction of the particles with a viscous environ-
ment (outer friction) the dissipation function depends on
the velocity of the particles (Stokes law) and has the form

Ψs =
1
2
ν
∑
n

ẋ2
n(t) (7)

where ν is the damping constant. In the case of internal
friction (we will call this type of friction hydrodynamical),
which is due to irreversible processes taking place within
the system, the dissipation function depends on the time
derivatives of the relative displacements and is given by
the expression

Ψh =
1
2
ν
∑
n

(ẋn+1(t)− ẋn(t))2
. (8)

The function (8) is the discrete version of the dissipation
function which is usually used in macroscopic elasticity
theory [18].

It is necessary to point out that if we consider the
soliton as a wave packet, its dynamics in the presence
of Stokes damping shows that the long-wave components
of the spectrum do not propagate (Appendix A). Thus
the soliton decomposes after a time in the order of 1/ν.
This feature does not show up with the hydrodynamical
damping, if ν < 1 (see Appendix A).

The equations of motion for the lattice displacements
xn(t) in the presence of damping have the form

d
dt
∂ L

∂ẋn
− ∂L

∂xn
+

∂Ψ

∂ẋn
= 0. (9)

Substituting equations (1–8) into equation (9), the equa-
tions of motion for the relative displacement un = xn+1−
xn can be written as

ün = V ′(un+1)− 2V ′(un) + V ′(un−1)
+ ξn+1(t) + ξn−1(t)− 2 ξn(t) +Dn (10)

where V ′(u) is the derivative of V with respect to its ar-
gument u and the damping term Dn is determined by

Dn =


−ν u̇n for Stokes damping,

ν (u̇n+1 + u̇n−1 − 2 u̇n) for hydrodynamical
damping

In order to obtain a analytical solution of the nonlin-
ear system of equations (10) we apply the quasi-continuum
approximation proposed in [19] (see also [20,21]). Regard-
ing n as a continuous variable (n → x, un(t) → u(x, t)),
equation (10) we obtain a damped and forced Boussinesq
(Bq) equation (see Appendix B):

∂2
t u− ∂2

xu− ∂2
t ∂

2
xu− ∂2

x (f(u)) = νm ∂
m
x ∂tu+ ∂2

xξ(x, t)
(11)

where ∂x and ∂t are the derivatives with respect to x and
t, respectively;

f(u) =
dV (u)

du
− u (12)

is a nonlinear force and the right-hand-side of equa-
tion (11) represents the damping in the system and the
action of an external force. The case m = 0 corresponds
to the Stokes damping while the case m = 2 corresponds
to the hydrodynamical damping:

νm =

{
−ν if m = 0,

ν if m = 2.
(13)

3 Multiple scale expansion

We are interested in how the dynamics and the behavior
of the soliton is affected by the two types of damping (m =
0, 2). So we consider both the position of the soliton center
of mass as a function of time, X(t), and its shape for
t > 0. We make a travelling wave ansatz u(x, t) = u(x−
X(t)) and use a multiple-scale perturbation expansion,
developed in detail in Appendix C, for a perturbed Bq
equation

∂2
t u− ∂2

xu− ∂2
t ∂

2
xu− ∂2

x (f(u)) = ε F (x, t) (14)

where ε F (x, t) is the perturbation term with

F (x, t) = νm ∂
m
x ∂tu+ ∂2

xξ(x, t). (15)

We seek an asymptotic solution of the form

u = u0 + ε u1 + ε2 u2 + · · · (16)
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with

c = c0 + ε c1 + ε2 c2 + · · · (17)

where c = Ẋ(t) is the velocity of the soliton. ε is a factor
introduced for convenience in the analytical calculations.
The case ε = 0 (u = u0) reduces equation (14) to the
unperturbed Bq equation

∂2
t u0 − ∂2

xu0 − ∂2
t ∂

2
xu0 − ∂2

x (f(u0)) = 0, (18)

which is the well-known improved Boussinesq (IBq) equa-
tion [19,20,22]. When ε = 1 we recover the damped and
forced Bq equation (11). In order to interpret the multiple-
scale perturbation results we must set ε = 1 and assume
that the terms on the r.h.s of (11) are small enough. So,
we must restrict ourselves to small values of the damping
constant ν.

In what follows we restrict our study to the damped
Bq equation

∂2
t u− ∂2

xu− ∂2
t ∂

2
xu− ∂2

x (f(u)) = νm ∂
m
x ∂tu. (19)

The study of the effect of external forces, particularly
stochastic forces, exceeds the frame of this paper and will
be published later.

From the multiple-scale perturbation analysis we ob-
tain that there are two compatibility conditions: One of
them follows from the order ε1 of perturbation, equa-
tion (67); And the other one from the order ε2, equa-
tion (77). Both are valid for arbitrary potential V (u).

Inserting the potential (4) or (5), together with the
corresponding one soliton solution, into the compatibil-
ity conditions we get a set of two ordinary differential
equations of motion (ODEs). These ODEs govern the time
evolution of the order ε0 and ε1 of velocity perturbation,
namely c0 and c1, respectively.

3.1 The power-like anharmonic potential

The expression (63) is the one-soliton solution of the
IBq equation (18) with the power-like anharmonic poten-
tial (4). Substituting this solution in equations (67, 77)
yields

ċ0 =


− (p−2) ν c0 (c02−1)

6−3 p+2 p c02 m = 0

− (p−2)2 ν (c02−1)2

(p+2) c0 (6−3 p+2 p c02) m = 2

(20)

ċ1 = −ν
(p− 2)

(
3 (p− 2) + (18− 7 p) c02 + 2 p c04

)
(6− 3 p+ 2 p c02)2 c1

+ ν2
2 (p− 2)

√
π c0Γ (p−1

p−2 )
2
Γ ( 2+p

2 p−4 )
√
c02 − 1 (6− 3 p+ 2 p c02)4 Γ ( p

p−2 )Γ ( p
2 p−4 )2

×
(

6 (p− 2)3 − 2 (p− 2)2 (−21 + 16 p) c02

+ p (104− 122 p+ 35 p2) c04 + p (16 + 14 p− 13 p2) c06

+ 2 p3 c0
8

)
for m = 0 (21)

and

ċ1 = − ν c1(p− 2)2 (c20 − 1)
(p+ 2)2 c20 (6− 3 p+ 2 p c20)2

(−3 (p2 − 4)

− 3 (−12− 4 p+ p2) c20 + 2 p (p+ 2) c40)

+ ν2
2 (p− 2)2

√
π (c20 − 1)3/2 Γ (p−1

p−2 )
2
Γ
(
p+2

2 p−4

)
(2 + p)2 c30 (6− 3 p+ 2 p c02)4

Γ ( p
p−2 )Γ ( p

2 p−4 )2

×
(

3 (p− 2)4 − 3 (p− 2)3 (−10 + 11 p) c20

+ (p− 2)2 p (−8 + 43 p) c40 + p (−32 + 84 p− 17 p3) c60

+ 2 p3 (6 + p) c80

)
for m = 2 (22)

where Γ (·) is the gamma function.
The set of ODEs (20–22) together with

Ẋ = c where c = c0 + c1 (23)

constitute the complete set of ODEs which determineX(t)
as a function of time.

3.2 The truncated Morse potential

The one-soliton solution of the IBq with the truncated
Morse potential is

u0 =
A

1 +B sinh2
(
η
2 (x− c0 t)

) (24)

where

A =
±6(c20 − 1)

∓3 +
√

21c20 − 12
, B =

2
√

21c20 − 12
∓3 +

√
21c20 − 12

and

η =

√
c20 − 1
c0

· (25)

The upper sign means the soliton produces a rarefaction
of the lattice, and the lower sign means compression. In
this paper we consider only the compressional case. By
inserting equation (24) in equation (67) and equation (77)
we get a set of ODEs. They are rather cumbersome and
therefore we make a further approximation by considering
only the soliton dynamics close to the sound velocity. So
we expand the ODEs in a Taylor series around the sound
velocity where O(c30) terms are neglected. In the Stokes
damping case the ODEs take the form

ċ0 +
68
45
ν c0 −

19
45
ν c20 −

49
45
ν = 0

ċ1 −
2 ν (−101 + 41 c0)

15 (5 + 7 c0)
c1

−
2 ν2
√

2
(
−39− 1112 c0 + 851 c02

)
225
√
c0 − 1 (5 + 7 c0)

= 0, (26)
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and in the hydrodynamical damping case (m = 2)

ċ0 −
8
15
ν c0 +

4
15
ν c0

2 +
4
15
ν = 0

ċ1 +
32 ν (c0 − 1)
5 (5 + 7 c0)

c1 −
176
√

2 ν2 (c0 − 1)
3
2

75 (5 + 7 c0)
= 0. (27)

These approximations of the exact equations are good
within a range of velocities 1 < c0

<
∼ 1.1

Notice that either equations (26) or equations (27),
together with equation (23), constitute a complete set of
equations of motion for X(t).

4 Numerical simulations

In order to verify these theoretical results for both the
power-like and the Morse potentials we have performed
molecular dynamics simulation for the discrete monatomic
chain which is governed by equation (10). Moreover we
have performed simulations on the level of the quasi-
continuum limit, namely with the damped Bq equa-
tion (19). For the damped Bq system we have used finite-
difference discretization in the space-domain [23] (see
Appendix D for details). The time integration in both
kinds of simulations was carried out by using the Heun
method [24]. In order to start the simulations at t = 0 we
have used one-soliton solutions of the IBq equation. Since
for some cases we need a long simulation time and the
solitons are supersonic, we have used periodic boundary
conditions to reduce the size of our system. In fact, we have
used a chain with 1500 lattice points in the molecular dy-
namics simulation; and in the damped-Bq-simulation the
length of the system has been L = 1000 with ∆x = 0.25.
We remark here that the solitons are bounded even when
they develop a tail in the presence of perturbations, be-
cause the rear of this tail vanish. As the soliton including
its tail is bounded in our finite system we are allowed to
use periodic boundaries in our codes. The length of the tail
grows with time, so we have considered not too long sim-
ulation times to avoid a possible overlapping between the
rear of the tail and the front of the soliton. The other pa-
rameters have been ∆t = 10−2 in the molecular dynamics
simulation and ∆t = 10−1 in the damped-Bq-simulation.

We have checked the accuracy of our codes by calcu-
lating the conserved quantity∫ ∞

−∞
u(x, t) dx

which is valid not only for the free soliton case (νm =
0) but also for the hydrodynamical damping case (m =
2). For the longest simulation time the variation of this
conserved quantity has been lower than 4× 10−9% in the
molecular dynamics simulation and lower than 2×10−13%
in the damped-Bq-simulation. Notice that this conserved
quantity can be calculated in a numerical window as long
as there is not overlap between its tail and the front of the
soliton.

The center of the soliton in both types of simulation
has been found by finding the three points xi−1, xi and
xi+1 where u(xi) is the absolute discrete maximum or min-
imum depending on whether the soliton is rarefactive or
compressional. Afterwards a parabola has been fitted to
the three coordinates, namely {xi, u(xi)}, and we have de-
fined the vertex of this parabola as the soliton center of
mass.

We have chosen ν0 = −ν = −10−3 and ν2 = ν = 10−2.
The reason for choosing different values is that the Stokes
damping has a stronger effect than the hydrodynamical
damping for the same value ν.

4.1 Soliton dynamics in the presence
of hydrodynamical damping (m = 2)

In the case of the power-like anharmonic potential we have
performed simulations in specific cases, namely for cubic
as well as for quartic anharmonicity. We have also per-
formed simulations in the case of the truncated Morse po-
tential.

In the cubic case (p = 3) in the presence of hydrody-
namical damping equations (20–22) reduce to

ċ0 +
ν
(
c0

2 − 1
)2

15 (−c0 + 2 c03)
= 0

ċ1 − ν
η2
(
−4− 3 η2 + 2 η4 + η6

)
15 (1 + η2)3 c1

−ν2 η
3
(
22 + 40 η2 + 18 η4 + η6

)
225 (1 + η2)3 = 0 (28)

where η has been defined in (25). In same way, for the
quartic case (p = 4) equations (20–22) reduce to

ċ0 +
ν
(
c0

2 − 1
)2

3 (−3 c0 + 4 c03)
= 0

ċ1 − ν
η3
(
−4− 3 η2 + 3 η4

)
3 (1 + 3 η2)2 c1

−ν2 π
2 η5

(
9 + 29 η2 + 39 η4 + 3 η6

)
36 (1 + 3 η2)4 = 0. (29)

In the case of the truncated Morse potential, which con-
tains a combination of cubic and quartic anharmonicities,
we have already got the corresponding set of simplified
equations (27). So depending on the type of anharmonic-
ity we have solved either equations (28) or equations (29),
or equations (27) together with equation (23). The result
from those numerical solutions is what we call theory’s
prediction.

In Figure 1 we show several examples of the soliton po-
sition as a function of time. These examples follow from
the two kinds of simulations and from theory’s predic-
tion. In particular Figures 1a and b correspond to the
soliton dynamics of the cubic and quartic cases, respec-
tively. Figure 1c corresponds to the case of the truncated
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Fig. 1. Soliton position in the sound velocity moving frame z
vs. time in the hydrodynamical damping case with ν = 10−2.
Solid line: molecular dynamics simulation, dashed line: theory’s
prediction (solution of Eqs. (28–29)), dotted line: simulation for
the Bq equation (19). Figures (a) and (b) correspond to the
cubic and quartic anharmonicities, respectively, and Figure (c)
corresponds to the truncated Morse potential. The uppercase
letters A, B, C, D, and E correspond to different initial veloc-
ities, namely c(0) = 1.01, 1.05, 1.1, 1.2 and 1.3, respectively

Morse potential. In each figure we show the soliton posi-
tion for different initial velocities. These cases are denoted
by uppercase letters. The position is plotted in the sound
velocity moving frame, defined by z(t) = X(t)− t. Notice
that we consider lower initial velocities in the case of the
truncated Morse potential (Fig. 1c), because in deriving
equations (27) further approximations have been made.

In general for all the potentials we see that for low initial
velocities (cases A, B and C) the lattice soliton position
(solid-lines) is predicted rather well by theory’s predic-
tion (dashed lines) as well as by the position of the Bq-
soliton (dotted lines). For higher initial velocities, namely
c(0) = 1.2 (cases D), the position of the lattice soliton
agrees better with the position of the Bq soliton (dot-
ted lines) than with the theory (dashed lines). And for
even higher initial velocities, namely c(0) = 1.3 (cases E),
quantitatively there is a clear difference between the three
dynamics. However qualitatively they are similar. The rea-
son for this behavior is that the quasi-continuum approx-
imation naturally predicts better the dynamics of broad
solitons than that of narrow ones [20]; and the solitons
are narrower when the initial velocity is higher. Notice
that in the cubic and quartic cases theory(dashed lines)
predicts better the Bq soliton position (dotted lines) than
the lattice soliton position (solid-lines). This is due to the
fact that both the theory and the Bq equation have been
derived in the framework of the quasi-continuum limit.
This feature does not show up in the case of the trun-
cated Morse potential due to the further approximations
that we have made in the theory of this case.

4.2 Soliton dynamics in the presence of Stokes
damping (m = 0)

In this section we treat the same cases as in the previ-
ous section but with the soliton bearing systems in the
presence of Stokes damping.

As in the previous section equations (20–22) can be
reduced depending on whether the potential has cubic or
quartic anharmonicity. In particular for the cubic anhar-
monicity (p = 3)

ċ0 +
ν c0

(
c0

2 − 1
)

6 c02 − 3
= 0

ċ1 + ν

(
2 + η2 + η6

)
3 (1 + η2)3 c1 − ν2

(
−4+3 η2+8 η4+2 η6

)
9 η (1+η2)3 = 0.

(30)

In the same way the reduced set of equations for the quar-
tic case is

ċ0 +
ν c0

(
c0

2 − 1
)

4 c02 − 3
= 0

ċ1 + ν

(
η + 3 η3

)2 (2− η2 + 3 η4
)

η2 (1 + 3 η2)4 c1

−ν2π
2
(
−1−3 η2−5 η4+19 η6+6 η8

)
4 η (1+3 η2)4 = 0 (31)

and equations (27) correspond to the case of the truncated
Morse potential.

The theory’s prediction of the soliton position fol-
lows from the numerical solution of either equations (30)
or equations (31) or equations (26) together with equa-
tion (23).
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Fig. 2. Soliton position in the sound velocity moving frame
z(t) vs. time in the Stokes damping case with ν = 10−3. Solid
line: molecular dynamics simulation, dashed line: theoretical
prediction (solution of Eqs. (30–31)), dotted line: simulation
of the Bq equation (19). Figures (a) and (b) correspond to
the cubic and quartic anharmonicities respectively. Figure (c)
corresponds to the truncated Morse potential. The uppercase
letters A, B, C, D, and E correspond to different initial veloc-
ities, namely c(0) = 1.01, 1.05, 1.1, 1.2 and 1.3, respectively

We show in Figure 2 the same cases that we have
treated in Figure 1. We have also kept the same conven-
tion. In Figure 2a we have not plotted the position of the
Bq soliton because it agrees very well with the theoreti-
cal prediction (dashed line). In general we can extend the
comments made for the hydrodynamical damping case to
the present Stokes damping case. We only want to re-
mark some relevant differences. First, in the present case

we have plotted the soliton dynamics during the transient
regime of the system, namely t < 1/ν , in contrast to the
hydrodynamical damping case where we have also consid-
ered times t� 1/ν. It is because the overdamp character
of the Stokes damping, in fact, the lattice soliton is de-
stroyed by the damping, namely for times t>∼3/ν. On the
other hand, neither the Bq simulation nor the analytical
results predict in a correct way the lattice soliton dynam-
ics for times t>∼ 1/ν . And second, the agreement between
the position of the lattice soliton (solid-line) and either the
position of the Bq soliton (dotted line) or theory’s predic-
tion (dashed line) is not as good as in the hydrodynamical
case. For instance, if we compare the results for the quar-
tic case with c0(0) = 1.2 (Figs. 1b and 2b: case D) we
see that the agreement between simulations and theory is
better for the hydrodynamical damping case than for the
Stokes damping case.

4.3 Soliton profile

Up to now we have analyzed the dynamics of solitons but
not their shape under the influence of damping. The soli-
ton profile for t > 0 in the presence of either hydrody-
namical damping or Stokes damping can be obtained by a
multiple-scale perturbation theory (Appendix C). In first
order the soliton solution reads

u = u0 + u1 (32)

where u0 is the unperturbed solution (63) and the func-
tion u1 follows from equations (79, 84). As an example,
the soliton solution in the case of a cubic potential with
hydrodynamical damping reads

u = u0 +
1
2
M + w + v (33)

with

w = sech2(φ) (A1 +A2 φ tanh(φ))

v = A3 φ sech2(φ)+(A4+(A5 φ
2+A6)sech2(φ)) tanh(φ)

+A7 tanh3(φ)

where φ = ηθ/2. M and the coefficients Ai, i = 1, .., 7 de-
pend only on the time and are written down explicitly in
Appendix E. In order to have a look at this theoretical be-
havior compared with the results from the simulations we
show in Figure 3 two specific examples which belong to the
cubic case. Figures 3a and b show snapshots of the soliton
profile moving to the right side in the presence of hydro-
dynamical damping and Stokes damping, respectively. We
see that in both examples the profiles are asymmetric and
agree with each other rather well. The main feature which
differs in both figures is that the amplitude of the tail
which appears at the rear of the soliton in the presence
of the hydrodynamical damping is positive, while in the
other case it is negative. Notice that the theory’s predic-
tion of the Stokes damping case is not as good as in the
hydrodynamical case where the deviations are very small,
in fact they are visible only in the center of the soliton.
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Fig. 3. Snapshots of the soliton profile for the system with
cubic anharmonicity. a: hydrodynamical damping case at t =
5000 with c(0) = 1.05, and ν = 10−2. b: Stokes damping case
at t = 500 with c(0) = 1.1 and ν = 10−3. Solid circles: lattice
soliton profile, dashed lines: Bq soliton profile, thin solid lines:
theory’s prediction.

5 Discussion and conclusions

In summary, in this work we have developed an ana-
lytical theory for the dynamics of lattice solitons on a
monatomic chain under the influence of damping. We
have considered Stokes and hydrodynamical damping. In
the quasi-continuum approximation the dynamics of the
driven and damped anharmonic lattice has been described
by a driven and damped Boussinesq equation. Our analyt-
ical approach has been based on the multiple-scale pertur-
bation theory. We have derived sets of equations of motion
corresponding to zero- and first order perturbations for the
velocity. We have also calculated the first order perturba-
tion for the soliton profile which develops a tail at the rear
end. In order to check the validity of our results we have
performed molecular dynamics simulation of the damped
anharmonic lattice. We have also solved numerically the
damped Bq equation. We have considered lattices with cu-
bic and quartic anharmonicities. The soliton position has
been defined as the position of the maximum of the soliton.
We have observed that our theory predicts in a correct way
the dynamics of lattice solitons when they propagate in a
medium with either hydrodynamical or Stokes damping.
This good agreement also holds for the soliton profiles.
However, in the Stokes damping case our analysis is only
done for the transient time, namely t < 1/ν where ν is

the damping constant, because the soliton decomposes for
larger times.

We have noticed that the quasi-continuum approxima-
tion describes in a better way the dynamics of the lattice
solitons in the presence of hydrodynamical damping than
in the case of the Stokes damping. This difference is due
to the fact that in the hydrodynamical damping case the
long-wave linear modes, which mostly contribute to the
soliton dynamics, are underdamped (see Eq. (43)) while
in the other case they are overdamped.

In general, the agreement between our theory and
molecular dynamics simulation is mostly due to fact that
our theory has been derived in the framework of the quasi-
continuum limit. Moreover, this approach is better than
earlier approximations made for the Korteweg-de Vries
equation [16], because higher soliton velocities can be con-
sidered.

We acknowledge support from DLR grant Nr.: UKR-002-99.
Yu. Gaididei is grateful for the hospitality of the University of
Bayreuth where this work was performed.

Appendix A: Damping

The Stokes damping does not permit the long wave com-
ponents of a wave packet to propagate, while the hydrody-
namical damping under a certain condition does not show
this feature. This can be seen by means of a simple ex-
ample: let us consider a harmonic monatomic chain with
2N lattice points whose equations of motion for the rela-
tive displacements un(t) in the presence of Stokes damping
have the form

ün(t) = un+1(t)− 2un(t) + un−1(t)− νu̇n(t) (34)

with n = 1, 2, 3, ..., 2N − 1. A travelling wave packet may
be written as

un(t) =
2N−1∑
k=0

ũke−i(βkn−ωkt) (35)

where βk is the wave number.
By inserting (35) in (34) we get 2N equations of motion

in k-space:

ω2
k − iνωk − γ̃k = 0 (36)

where

γ̃k = 2 (1− cos(βk)) (37)

is a k-dependent function which satisfies

0 ≤ γ̃k ≤ 4. (38)

Solving (36) we obtain

iωk = −ν
2
± i

√
γ̃k −

(ν
2

)2

· (39)
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Notice that for every finite value of ν > 0 there are small
values of k for which the condition of oscillation

γ̃k −
(ν

2

)2

> 0 (40)

is not satisfied. In other words, parts of the wave packet
do not propagate.

However, this is not the case for the hydrodynamical
damping. Here the equations of motion are

ün(t) = un+1(t)− 2un(t) + un−1(t)
+ν (u̇n+1(t)− 2u̇n(t) + u̇n−1(t)) (41)

with n = 1, 2, 3, ..., 2N − 1 By using the ansatz (35) this
set of equations reads in k-space

ω2
k − iνγ̃kωk − γ̃k = 0 (42)

with k = 1, 2, 3, ..., 2N − 1.

iωk = −ν
2
γ̃k ± i

√
γ̃k

(
1−

(ν
2

)2

γ̃k

)
. (43)

Here the condition of oscillation

1−
(ν

2

)2

γ̃k > 0 (44)

is always satisfied, if ν < 1 .

Appendix B: Quasi-continuum approximation

The equations of motion of the lattice in the presence of
dissipation and external forces are given by equations (10).
In order to compact the calculations we consider here a
dissipation term Dn containing both the Stokes and the
hydrodynamical damping. So in this case the equations of
motion read

ün = V ′(un+1)− 2V ′(un) + V ′(un−1)
+ ξn+1(t) + ξn−1(t)− 2 ξn(t) + ν0u̇n

+ ν2(u̇n+1 − 2u̇n + u̇n−1) (45)

where νm, defined by equation (13), with m = 0, 2 are the
damping constants of Stokes and hydrodynamical damp-
ing, respectively. This equation can be rewritten as

ün = γ̂(n)
(
V ′(un) + ξn(t) + ν2u̇n

)
+ ν0u̇n (46)

where

γ̂(n) = 4 sinh2

(
∂n
2

)
= 4 sinh2

(a
2
∂x
)

(47)

is a differential operator where x = na and a is the lat-
tice constant. At this point x is regarded as a continuous
variable, so un(t) → u(x, t) and ξn(t) → ξ(x, t). Taking
into account that the function 4 sinh2(d/2)/d2 is smooth

at d = 0, we can multiply both sides of (46) by the oper-
ator a2∂2

x/4 sinh2(a∂x/2), and expanding this operator as
well as the operator on the r.h.s. in a Taylor series we get

∂2
t u(x, t) = a2∂2

xV
′ + a2∂2

xξ(x, t) + a2λ∂2
x∂

2
t u(x, t)

+ ν0∂tu(x, t)− ν0a
2λ∂2

x∂tu(x, t) + ν2a
2∂2
x∂tu(x, t). (48)

Setting a = 1, scaling x →
√
λx, t →

√
λ t, ν0 → ν0/

√
λ,

ν2 →
√
λν2 and using the definition (12) we get

∂2
t u(x, t)− ∂2

xu(x, t)− ∂2
xf(u(x, t))− ∂2

x∂
2
t u(x, t) =

+ ∂2
xξ(x, t) + ν0∂tu(x, t)− ν0∂

2
x∂tu(x, t)

+ ν2∂
2
x∂tu(x, t). (49)

One of the Stokes damping terms can be neglected because
the field u(x, t) is slowly varying in space, therefore

|ν0 ∂tu(x, t)| � |ν0 ∂
2
x∂tu(x, t)|. (50)

The estimate (50) has been confirmed by the numeri-
cal solution of equation (48) with and without the term
ν0∂

2
x∂tu(x, t). In the rest of paper we consider separately

either the Stokes damping case or the hydrodynamical
case, therefore equation (49) can be written as

∂2
t u− ∂2

xu− ∂2
t ∂

2
xu− ∂2

x (f(u)) = νm ∂
m
x ∂tu+ ∂2

xξ(x, t)

with m = 0, 2.

Appendix C: Multiple-scale perturbation
expansion

In this appendix we develop a multiple-scale perturbation
approach to the generalized Boussinesq-Burgers equation

∂2
t u− ∂2

xu− ∂2
t ∂

2
xu− ∂2

x (f(u)) =

ε
(
νm ∂

m
x ∂tu+ ∂2

xξ(x, t)
)

(51)

where f(u) = dV (u)
du −u is a nonlinear force and the right-

hand-side of this equation represents the damping in the
system and the action of an external force. We consider
two types of damping

νm =
{
−ν if m = 0
ν if m = 2

and ε is a small parameter. In our derivation we will fol-
low the procedure which was proposed in [16] for the per-
turbed Korteweg-de-Vries equation.

By using the transformation to the moving frame of
reference

θ = x−X(T ), T = εt,

X(T ) =
1
ε

T∫
0

c(T ′)dT ′ (52)
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where X(T ) is the center of mass position of the soliton
and c(T ) is its velocity which depend on the “slow” time
variable T , equation (51) can be written in the form(
c2 ∂2

θ − 2 ε c ∂θ ∂T − εċ ∂θ + ε2∂2
T

)
(1− ∂2

θ )u

− ∂2
θu− ∂2

θ (f(u)) = ε
(
νm ∂

m
θ (ε∂T − c∂θ)u+ ∂2

θζ(θ, T )
)

(53)

where ˙≡ d
dT and the notation ξ(x, t) = ζ(θ, T ) was used.

We seek an asymptotic solution of the form

u = u0 + ε u1 + ε2 u2 + · · · (54)

with

c = c0 + ε c1 + ε2 c2 + · · · (55)

Inserting equations (54, 55) into equation (53) and col-
lecting powers of ε we get

ε0:

∂2
θ

(
(c20 − 1)u0 − c20 ∂2

θ u0 − f(u0)
)

= 0, (56)

ε1:

∂2
θ

(
(c20 − 1)u1 − c20 ∂2

θ u1 − f ′(u0)u1

)
= ∂θ F1, (57)

F1 = −(1− ∂2
θ ) (2 c0 c1 ∂θ − 2 c0 ∂T − ċ0) u0

−νm c0 ∂mθ u0 + ∂θζ(θ, T ); (58)

ε2:

∂2
θ

(
(c20 − 1)u2 − c20 ∂2

θ u2 − f ′(u0)u2

)
= ∂θ F2

− (1− ∂2
θ )∂2

T u0 + νm ∂
m
θ (∂T u0 − c0 ∂θ u1 − c1 ∂θ u0) ,

(59)

F2 = −(1− ∂2
θ ){2 c0 c1 ∂θ u1 + (c21 + 2c0c2) ∂θ u0

−2 c0 ∂T u1 − 2c1∂T u0 − ċ0 u1 − ċ1 u0}

+
1
2
∂θ
(
f ′′(u0)u2

1

)
. (60)

Integrating twice equation (56) under vanishing
boundary conditions for u0 at infinity, we obtain the equa-
tion

(c20 − 1)u0 − c20 ∂2
θ u0 − f(u0) = 0. (61)

In the case of the power-like anharmonic potential

Uanh =
1
p
up, p > 2 (62)

the solution of equation (61) has the form

u0 =
(p

2
(c20 − 1)

)1/(p−2)

sech2/(p−2)

(
p− 2

2`
θ

)
(63)

where the parameter ` = c0√
c20−1

characterizes the width

of the excitation.

Integrating equation (57) under vanishing boundary
conditions for ∂θ u1 at θ→ ±∞ and for u1 → 0 as θ →∞
we get

(c20 − 1)u1 − c20 ∂2
θ u1 − f ′(u0)u1 = −

∞∫
θ

F1(θ̄) dθ̄.

(64)

The homogeneous part of equation (64) has two linearly
independent solutions

v1 = ∂θ u0, v2 = v1

θ∫
0

dθ̄
(∂θ̄ u0)2 (65)

with the Wronskian v2 ∂θ v1 − v1 ∂θ v2 = 1. Taking into
account that of these solutions only v1 vanishes as θ →
±∞, the compatibility condition for a bounded solution
of the inhomogeneous equation (64) is

∞∫
−∞

dθ v1(θ)
∫ ∞
θ

F1(θ̄) dθ̄ ≡
∞∫
−∞

u0 F1 dθ = 0. (66)

Inserting equation (5) into equation (66) we obtain that
the compatibility condition in the order ε1 has the form

∂T
(
c0 〈u2

0 + (∂θ u0)2〉
)

= νm c0 〈u0 ∂
m
θ u0〉+ 〈u0 ∂θζ〉

(67)

where the notation

〈g〉 ≡
∞∫
−∞

g(θ) dθ (68)

was introduced. In the same way, we obtain from equa-
tion (59) that the compatibility condition in the order ε2
has the form

∂T

[
2c0 〈u1

(
1− ∂2

θ

)
u0〉+ c1 〈u2

0 + (∂θ u0)2〉
]

+

〈
u0(θ)

∞∫
θ

dθ̄ ∂2
Tu0(θ̄)

〉
+

1
2

(c20 − 1)M2 =

νm
(
2c0〈u1 ∂

m
θ u0〉+ c1 〈u0 ∂

m
θ u0〉 − 〈u0 ∂T ∂

m−1
θ u0〉

)
.

(69)

Here

M = lim
θ→−∞

u1(θ)

and as seen from equation (57) this quantity is determined
by the expression

M = − 1
c20 − 1

〈F1(θ)〉

= − 1
c20 − 1

(
2c0 ∂T 〈u0〉+ ċ0 〈u0〉 − ν0 δm0 c0 〈u0〉

+ ζ(∞, T )− ζ(−∞, T )
)
. (70)
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Note that in deriving the compatibility condition (69) the
relation

1
2
〈u0 ∂θ

(
u2

1 f
′′(u0)

)
〉 = −〈u1 ∂θ (u1 f

′(u0))〉 (71)

and equations (57–5) were used.
Further simplification of the compatibility condi-

tion (69) may be achieved by using the relation

(
c20 − 1− f ′(u0)− c20 ∂2

θ

) ∂u0

∂ c20
= −(1− ∂2

θ )u0 (72)

which can be obtained by differentiating equation (61)
with respect to c20, and the relation(

1− 1
c20 − 1

f ′(u0)− `2 ∂2
θ

)
∂u0

∂ `2
= ∂2

θ u0 (73)

which can be obtained from the equation

(
`2 ∂2

θ − 1
)
u0 +

1
c20 − 1

f(u0) = 0 (74)

by differentiating it with respect to `2. Thus by using equa-
tions (64, 72) we get

〈u1 (1− ∂2
θ )u0 〉 =

1
2
c1

∂

∂ c0
〈
(
u2

0 + (∂θu0)2
)
〉

− 1
4 c0

M (c20 − 1)
∂ 〈u0〉
∂ c0

− 1
2c0

〈
∂u0

∂ c0

(
ζ(θ, T )− 1

2
(ζ(−∞, T ) + ζ(∞, T ))

)〉
·

(75)

In the same way by using equations (64, 73) we get

〈u1 ∂
2
θ u0〉 =

c20 − 1
4c20

M 〈u0〉 −
c1
2c0
〈u2

0 − (∂θu0)2〉+

1
2c20

〈
θ ∂θu0

(
ζ(θ, T )− 1

2
(ζ(−∞, T ) + ζ(∞, T ))

)〉
·

(76)

Inserting equations (75, 76) into equation (69) we obtain
that the compatibility condition in the order ε2 takes the
form

∂

∂ T

{
c1

∂

∂ c0

(
c0〈u2

0 + (∂θu0)2〉
)

− 1
2
(
(c20 − 1)M − ċ0 〈u0〉

) ∂〈u0〉
∂c0

}
+

1
2

(c20 − 1)M2

− 1
2
ċ20

(
∂ 〈u0〉
∂ c0

)2

− ċ0
∂2

∂c20

〈
u0

(
ζ(θ, T )

− 1
2

(ζ(−∞, T )− ζ(∞, T ))
)〉

= νmDm

(77)

where the right-hand-side is determined by the expressions

D0 =
c20 − 1
2 c0

M

(
〈u0〉 − c0

∂ 〈u0〉
∂ c0

)
+ c1 〈(∂θu0)2〉

+ c1c0
∂

∂ c0

(
〈u2

0〉+ 〈(∂θu0)2〉
)

+
ċ0
2
〈u0〉

∂ 〈u0〉
∂ c0

+
〈(

θ

c0
∂θu0 −

∂u0

∂ c0

)(
ζ(θ, T )− 1

2
(ζ(−∞, T )

+ ζ(∞, T ))
)〉

,

D2 =
c20 − 1
2 c0

M 〈u0〉 − c1 〈u2
0〉

+
1
c0
〈θ ∂θu0

(
ζ(θ, T )− 1

2
(ζ(−∞, T ) + ζ(∞, T ))

)〉
·

(78)

To find how the soliton profile changes in the presence of
damping it is convenient to represent the function u1 in
the form (see [16])

u1 =
1
2
M + w + v (79)

where w → 0 as θ → ±∞ while v → ∓ 1
2M as θ → ±∞.

The functions w and v satisfy the equations

c20 ∂
2
θw +

(
f ′(u0)− c20 + 1

)
w = Gw(θ) (80)

c20 ∂
2
θv +

(
f ′(u0)− c20 + 1

)
v = Gv(θ) (81)

where

Gw(θ) = 2c0c1 (1− ∂2
θ )u0 −

1
2
M f ′(u0) (82)

Gv(θ) = −
θ∫

0

{
(1− ∂2

θ̄ ) (2 c0 ∂T + ċ0)− νm c0 ∂mθ̄
}

× u0(θ̄) dθ̄. (83)

Using the functions (65) it is straightforward to see that
the solutions of equations (80, 81) are determined by the
expressions

w =
1
c20

θ∫
0

(
v1(θ) v2(θ̄)− v2(θ) v1(θ̄)

)
Gw(θ̄) dθ̄,

v =
1
c20

θ∫
0

(
v1(θ) v2(θ̄)− v2(θ) v1(θ̄)

)
Gv(θ̄) dθ̄. (84)

and c1 to be obtained via equation (77).

Appendix D: Discretization of the Bq equation

The Bq equation reads

∂2
t u(x, t)− ∂2

xu(x, t)− ∂2
t ∂

2
xu(x, t)− ∂2

x (f(u(x, t))) =
F (x, t) (85)
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where F (x, t) are external forces and/or dissipation. By
defining the variable v(x, t) = ∂tu(x, t) equation (85) can
be reduced to two partial differential equations of first
order in time, namely

∂tv(x, t) = ∂2
xu(x, t) + ∂2

x∂tv(x, t) + ∂2
x (f(u(x, t)))

+F (x, t)
∂tu(x, t) = v(x, t). (86)

By using finite-difference discretization in the space-
domain equations (86) take the form

v̇i(t) =
ui+1(t)− 2ui(t) + ui−1(t)

∆x2

+
v̇i+1(t)− 2v̇i(t) + v̇i−1(t)

∆x2

+
f(ui+1(t)))− 2f(ui(t)) + f(ui−1(t))

∆x2

+Fi(t),
u̇i(t) = vi(t) (87)

where ˙≡ d
dt , ui(t) = u(xi, t), vi(t) = v(xi, t), f(ui(t)) =

un(xi, t) and Fi(t) = F (xi, t) with n = 2, 3. xi = i∆x
where ∆x is the mesh size of the space variable and i =
1, 2, · · ·, N . The length of the system L = N ∆x. In the
numerical integration process we use periodic boundary
conditions, namely u0(t) = uN (t) and uN+1(t) = u1(t).
The same boundaries are used for the variables vi(t) and
Fi(t). If we rewrite equations (87) so

−v̇i+1(t) + (∆x2 + 2)v̇i(t)− v̇i−1(t) =
ui+1(t)− 2ui(t) + ui−1(t)
+f(ui+1(t))− 2f(ui(t)) + f(ui−1(t))
+∆x2 Fi(t), (88)
u̇i(t) = vi(t), (89)

they can be regarded as a vectorial equations so

Âv̇ = G,

u̇ = v (90)

where u̇i and v̇i are elements of the vectors u̇ and v̇, re-
spectively. The elements Gi of the vector G are the r.h.s.
of (88) and the square matrix

Â =



∆ −1 0 0 · · · · · · 0 0 −1

−1 ∆ −1 0 · · · · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 −1 ∆ −1 0 · · · 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · · · · 0 0 −1 ∆ −1

−1 0 0 0 · · · · · · 0 −1 ∆


N×N

with ∆ = ∆x2 + 2. Notice that this tridiagonal matrix is
cyclic because we use periodic boundary conditions [25].

From (90) we can derive

v̇ = Â−1G,

u̇ = v, (91)

therefore at this stage we can use a classical integrator as
for example the Heun algorithm in order to perform the
numerical integration in time.

Appendix E: Coefficients

The soliton solution in the case of cubic anharmonicity
and hydrodynamical damping reads

u = u0 +
1
2
M + w + v

with

w = sech2(φ) (A1 +A2 φ tanh(φ))

v = A3φsech2(φ)+(A4 + (A5φ
2 +A6)sech2(φ)) tanh(φ)

+A7 tanh3(φ)

where

A1 =
3ν
5

(3− c20)
√
c20 − 1

2 c20 − 1
+ 3 c1 c0

A2 = −3ν
5

(3− c20)
√
c20 − 1

2 c20 − 1
− 3

c1
c0

A3 = 2ν
√
c2o−1

5(2c20−1)
A4 = − 3

8 (5c20 − 3)A3

A5 = − 1
2c20
A3 A6 = − 1

8 (17− 15c20)A3

A7 = − 1
8 (5c20 − 3)A3 M = (5c20 − 3)A3.

The velocities c0 and c1 can be determined by equa-
tions (28).
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